Apprendre a jouer

a.k.a. Introduction to Deep and Reinforcement Learning
Mathieu Aubry, LIGM-Imagine

About me

* Researcher in Computer Vision
* At Ecole des Ponts (across the street, shared lab with UPEM)
* Team focus: machine learning and computer vision

* Personal focus: applications to Digital Humanities

Today

1. Introduction to supervised and Deep Learning
(focus on Computer Vision)

2. Introduction to reinforcement learning
(focus on learning Pong)

2016 New Yok Times

“The portion of evolutionin 7P ixplanationol eep Leanig
which animals developed When Pichai said that Google would

henceforth be “A.L first,” he was not just

eYes Wasa big deve]opment- making a claim about his company’s
Now computers hm eves_’ business strategy; he was throwing in his

company’s lot with this long-unworkable

idea. Pichai’s allocation of resources
ensured that people like Dean could ensure that people like Hinton would
have, at long last, enough computers and enough data to make a persuasive
argument. An average brain has something on the order of 100 billion
neurons. Each neuron is connected to up to 10,000 other neurons, which
means that the number of synapses is between 100 trillion and 1,000
trillion. For a simple artificial neural network of the sort proposed in the
1940s, the attempt to even try to replicate this was unimaginable. We're still
far from the construction of a network of that size, but Google Brain’s
investment allowed for the creation of artificial neural networks comparable
to the brains of mice.

NEW NAYY DRVICE
LEARNS BY DOING

Psychologist Shows Embryo
of Computer Designed to
Read and Grow Wiser

WASHINGTON, July. 7 (UPI)
—The Navy revealed the em-
bryo of an electronic computer
today that it expects will be
abla to walk, talk, see, write,
reproduce itself and be . con-
scious of its existence,

The embryo—the Weather
Bureau's $2,000,000 “704” com-
puter—learned to differentiate
between right and left after
fifty aftempts in the Navy’s
demonstration for newsmen,,

The service said it would use
this principle to build the first
of its Perceptron thinking ma-
chines that will be able to read
and write, It is expected to be
finished in about a year at a
cost of $100,000.

Dr. Frank Rosenblatt, de-
'signer of the Perceptron, con-
ducted the demonstration. He
said ‘the machine would be the
first device to think as the hu-
man brain. As do human be-

ings, Perceptron will make mis-
takeg at first, but will grow
wiser as it gains experience, he
said, '

Dr. Rosenblatt, a research
psychologist at the -Cornell
Aeronautical Laboratory, Buf-
falo, said Perceptrons might be
fired to the planets as mechani-
cal space explorers,

Without Human Controls .

. The Navy said the perceptron

would be the- first non-living
mechanism ‘“capable of receiv-
ing, recognizing and identifying
its surroundings without -any
human training or control.”

remember images and informa-
tion it has perceived itself. Ordi-
nary computers remember only
what ig fed into them on punch
cards or magnetic tape. .
Later Perceptrons will be able
[to recognize people and call out
‘their names and instantly trans-

speech or writing in another
language, it was predicted.
Mr. Rosenblatt said in prin-
ciple it would be possible to
build brains that could repro-
duce themselves on an assembly

!

scious of their existence.

line and which would be con-

The “brain” is designed to

|

late speech in one language to

1958 New Yok Times

In today’'s demonstration, the
“704” was fed two cards, one
with squares marked on the left
side and the other with squares
on the right side.

Learng by Doing

In the first fifty trials, the
machine made no distinction be-
tween them. It then started
registering a “Q” for the left
squares and ‘“O"” for the right
squares.

Dr. Rosenblatt said he could
machine

explain why the
learned only in highly technical
terms. But he said the computer
had undergone a ‘‘self-induced
change in the wiring diagram.”

The first Perceptron will
have about 1,000 electronic
“association cells” receiving
electrical impulses from an eye-
like scanning device with 400
photo-cells. The human brain
has 10,000,000,000 responsive
cells, including 100,000,000 con-
nections with the eyes.

Slide L. Lazebnik

Supervised learning

* Data {(xlayl)a"'(xmyn)}
* Produces a predictor/decision function f : X — A

* Hypothesis: data sampled from random variable X and Y

* Attempts to minimize the risk ‘C(l(f(X), Y))

n
* By minimizing the empirical risk Z l(f(:):z), yz)
1—=1

Example: Image classification

* Input x; are images i.e. x;, €[0,11V"

e Label y,€{0,1}¥, y, |f image i is part of class k

* Prediction f(x) €[0,11" y probability image i is part of class k
[0
0

Yy = 1 | «—— Australian shepherd

0

\ 0

* ImageNet: NxN ~ 50 K, “1M number of training examples, 1000 classes

How can we define f?

» Using a set of parameters (e.g. linear/polynomial regression)
* Directly using the training data

What are the risks?

* Making poor predictions on the training data (underfitting)
* Not generalizing to unseen data (overfitting)

Example: polynomial regression of degree M

1 o M=0 1
o o
t t
o No o
of 0
° o
o)
1 1
0 1
1} o M=3 - 1t
t t
)
ot © 0
o
)
1 1

Breaking the curse of dimensionality

* The curse of dimensionality:

* To approximate a function, you need a number of training examples
exponential in the number of dimensions

* 1M training images is far too little for 100K dimensions

e Solutions:

» Use a simple predictor, with few parameters, e.g. linear classifier (linear
regression, SVM...)

* Regularize
» Use a different (better) representation of the data, i.e. a feature

Example: classical vision

Hand crafted decriptor
Ex: HOG, bag of features

1. Learn intermediate representation
2. Multiply intermediate representations

Simple classifier:
Ex: SVM

Implicit hypothesis: this compositionality is useful for the data we have

Deep Learning

Image —> | Llayerl —> | layer2 | =—> - — classifier

(0

* |dea:
1. Learn intermediate representation
2. Multiply intermediate representations

Implicit hypothesis: this compositionality is useful for the data we have

Results

ILSVRC Top 5 Error on ImageNet

30
W ocv

25
g Deep Learning
o 20
I
< B Human
§ 15
W
7))
oy 10
L2

s l

0

2010 2011 2012 2013 2014 Human 2015 2016

https://www.dsiac.org

Perceptron

* Frank Rosenblatt, 1957

f(x) = sign szwz

Perceptron

* Frank Rosenblatt, 1957

X 1
w
2 k -
Cus () J@) =sign | 3wt
1

3

Biological neuron

Axonal arborization

\ Axon from another cell

Synapse
Dendrite

\/

Synapses

Cell body or Soma

Slide L. Lazebnik

Perceptron

* Frank Rosenblatt, 1957

X K
zz ﬁ f(x)

M
4

Issue: incapable of performing exclusive OR (Minsky and Papert 1969)

Perceptron

2 layers perceptron

2 layers perceptron

Input W 1 Hidden units W 2 Output

» 2 layers perceptron: universal approximator (Cybenko 1989)
* But potentially needs many neurons -> more layers, deeper
networks (e.g. Bengio et al 07, Montufar et al 2014)

Multi-layer perceptron (MLP)

Input Hidden units Output

» 2 layers perceptron: universal approximator (Cybenko 1989)
* But potentially needs many neurons -> more layers, deeper
networks (e.g. Bengio et al 07, Montufar et al 2014)

Abstraction

Layer 1 —> Non-linearity — Layer 2

. _ —> Non-linearity —> Output
(linear) (linear)

Input —>

Avoiding overfitting

* Lots of parameters !

* Regularize (add L2 norm of the weights to the loss, also called weight decay)
* Enforce structure in the design of the network: convolutions and poolings

e Convolution for images

K
N 3

3
1
K.

Weights

Image Output

Example: LeNet 5 (1998)

C3:f. maps 16@10x10
C1: feature maps S4:f. maps 16@5x5

INPUT
6@28x28 .
S2:1f. ma C5 layer F6 layer OUTPUT

6@14x1
r

Full conAecnon Gaussuan connections
Convolutions Subsampling Convolunons Subsamplnng Full oonnectnon

Example: ResNet (2015)

* LleNet 5

* AlexNet

»i_“lx‘l'_l‘ii_(l,x{,w_l .lI,EFI_z ,rl i“;l; z{_;lf!,l,- ,_l, 4'_.l,5 5,_.:I

* ResNet — 34 layer version visualized; state of the art 100s layers

'v"'.. .o"‘.. :"'..
; S EE NG EE I I I R N : s
— E e P B e e e P M B A BT A A E I E P E T B B 2 B b
3 2l (B 1] [B] (&] [&] (3] 2] (2] (B] 3] (3] 3] 3] 18] 2] (%] (2] |R] [B] |2| |3

Learning

* Non convex!
* Solution: not caring, simply perform SGD (Werbos 1974, LeCun 1998)
Note: every layer needs to be differentiable almost everywhere

 Stochastic Gradient Descend (SGD): same as gradient descent except
the gradient is evaluated from a random inputs.

* How to evaluate the gradient?
* Short answer: since everything is differentiable, just use chain rule
* Long answer: Back Propagation algorithm

Back Propagation

Two step process: Wn
* Forward pass: compute the X; by

X; = F(Xi—1, W)

Wi ‘
* Backward: compute the oL and Ok by | Fi(XI-1, Wi) \
aI/I/v’l, 8Xz Xi=1

|
OE OE OF;(X;_1,W;) o
oW, N 0X; oW w"‘l F1(X0, W1) \
OF o OF 8F@(XZ_1,W7,) - desired

— input X output Y
aX@'—l 8Xz aXf,;_l

Diagram from Y. LeCun

What are the different layers?

Linear

N 1

R > |

Input vector Weights Output

Linear

K
N
K
N
>
R

Input vector Weights Output

* |ssue: lots of parameters

Convolution

 Sharing the weights / using the structure of the data

K

3 (or k) . 3 (or k) N 1
K

Weights

N

Image (multi-dimensional array) Output

e Zero padding to keep the same size.
 Relation with linear layers -> “fully convolutional” approach

Pooling

* Goal: aggregating information, gain invariance

* Example:

* Max pooling: z — maX(zi)
(2

Ex: Image classification with fully convolutional approach

1 .

[J 1 . _ 1

Average pooling: z — E : z
1=

Non linearities

» Sigmoid, tanh, ReLu, "leaky” ReLu (max(x, ex))

* In practice, all of them seem to work, but can make the networks
harder to train.

* Lots of success with Relu:
* Avoid extremely small derivatives (e.g. of a sigmoid)
* Leads to sparse outputs
* Very simple derivative

Reshaping, concatenating, upsampling...

* Reshaping: e.g. need to interpret an array as a vector or vice-versa

* Concatenating: e.g. a network first treating two images independently
then together

 Upsampling: e.g. a generative network

-> very simple derivative, but very useful in practice

Many more

* As long as you can compute forward and backward (fast)
* E.g. normalization, cropping...

* NN can be seen just as a general modular framework, you can define
new modules, organize them etc.

Practical problems

* Data size:
get lots of memory, SSD, use efficient database structure

* Speed: use GPUs, parallel data loading
* Network size: get lots of memory on your GPU or/and use several GPUs

Good news: you don’t have to do it!

Many ready to use and efficient frameworks are available (Pytorch, Torch,
TensorFlow, MatConvNet, Caffe, ...)

Outline

1. Introduction to supervised and Deep Learning
(focus on Computer Vision)

2. Introduction to reinforcement learning
(focus on learning Pong)

Disclaimer

* Not my main research area, but “simple” and fun application of NN to
playing games.

* Inspiration for these slides :

* Online book from Sutton and Barto, Reinforcement Learning: An Introduction
* Andrej Karpathy blog post http://karpathy.github.io/2016/05/31/rl/

e Atari games with RL seminal paper: Mnih, V., Kavukcuoglu, K., Silver, D.,
Rusu, A. A., Veness, J., Bellemare, M. G., ... & Petersen, S. Human-level control
through deep reinforcement learning. Nature, 2015

Reinforcement learning

* No prior data / ideal behavior available
-> different from supervised learning

* Your algorithm has to choose a set of actions, that result (in a non
deterministic manner) in a final reward.
-> optimize a reward, different from unsupervised learning

* It’s typically impossible to explore exhaustively the set of actions.

Markov Decision Process

* Formalization: Markov decision process, relate sensation, action and

goal

state

reward
R;

R

el

:l Agent l

-

S:l

i<—

| Environment

]4_

action

From Sutton and Barto, 2018

Figure 3.1: The agent-environment interaction in a Markov decision process.

* RL objects: environment, state, action, agent, policy, reward signal,
value function, environment model

Example: pong

Gif from http://karpathy.github.io/2016/05/31/rl/

Reinforcement learning

* Goal: minimize regret (difference with optimal policy)
* Trial and error search, exploration / exploitation trade-off
e Often stochastic environment/rewards

* How to map situations to actions?

Policy Gradient (PG)

One possible approach:

* We use a policy network (a standard MLP) that predicts a probability
for each action (e.g. going up in pong)

* To train it, we sample actions from the current policy, accumulate the
gradients, and do a gradient step depending on the final reward
(winning or loosing the game in Pong)

* It will work ... if you have a reasonnable probability to win by chance

Example Pong

Learnt weights

.
5] :
.
.
5 !
: -y ‘ .
. ' |
’ i | , ~ |
_ . " " . e " ~ » "" '~] & : |
' ’
¥ ; \
. . \ ‘ ‘ ‘ ‘ . ’
) 4 q | | '
| ‘ | |
: ’ . : | '
. » . - ‘.|'
. ‘ | | ’
A v\ | . |
' k '
: | ; : . : > 5 ,/ : v’
v ~ . ‘ : ' . :
) . " - ' _ bl 4 : : : : .
.
| :
o ‘ l .' .
’ . -) ‘ ‘ l‘
\ ‘ | | ’ ‘
! : ' | | |
: | ‘ .
) | “ ‘
¥
g .
: :
)
5 ’. ‘ | .
.
v L . | . ; .
. Y ' " . % : ‘ |
' ’
LI S
. » . - .)~ L™ . X 4 i | ‘
) _ A\ | ‘ ‘ |
. N ’ . ' | |
. L 5 : - .‘ : | |
. | |
| : |
: ‘ ‘ |

Conclusion

* NN and particularly CNN work remarkably well for high dimensional
problems, despite their simplicity, when enough data is available

* RL works well when there is a good probability to succeed by chance
(e.g. better than human / classical Al on most Atari games)

* Fast moving area!

