
Apprendre à jouer
a.k.a.	Introduction	to	Deep	and	Reinforcement	Learning

Mathieu	Aubry,	LIGM-Imagine	



About	me

• Researcher	in	Computer	Vision

• At	École des	Ponts (across	the	street,	shared	lab	with	UPEM)

• Team	focus:	machine	learning	and	computer	vision

• Personal	focus:	applications	to	Digital	Humanities



Today

1. Introduction	to	supervised	and	Deep	Learning	
(focus	on	Computer	Vision)

2. Introduction	to	reinforcement	learning	
(focus	on	learning	Pong)



2016	New	Yok	Times



1958	New	Yok	Times

Slide	L.	Lazebnik



Supervised	learning

• Data
• Produces	a	predictor/decision	function

• Hypothesis:	data	sampled	from	random	variable						and
• Attempts	to	minimize	the	risk	

• By	minimizing	the	empirical	risk

E(l(f(X), Y ))
X Y

nX

i=1

l(f(xi), yi)

f̂ : X ! A



Example:	Image	classification

• Input						are	images,	i.e.	
• Label																					,										if	image	i is	part	of	class	k
• Prediction																				,					probability	image	i is	part	of	class	k

• ImageNet:	NxN ~	50	K,	~1M	number	of	training	examples,	1000	classes

x = y =

0

BBBBBBBB@

0
...
0
1
0
...
0

1

CCCCCCCCA

Australian	shepherd



• Using	a	set	of	parameters	(e.g.	linear/polynomial	regression)
• Directly	using	the	training	data

• Making	poor	predictions	on	the	training	data	(underfitting)
• Not	generalizing	to	unseen	data	(overfitting)

What	are	the	risks?

How	can	we	define	f?



Example:	polynomial	regression	of	degree	M



Breaking	the	curse	of	dimensionality

• The	curse	of	dimensionality:
• To	approximate	a	function,	you	need	a	number	of	training	examples	
exponential	in	the	number	of	dimensions
• 1M	training	images	is	far	too	little	for	100K	dimensions

• Solutions:
• Use	a	simple	predictor,	with	few	parameters,	e.g.	linear	classifier	(linear	
regression,	SVM…)
• Regularize
• Use	a	different	(better)	representation	of	the	data,	i.e.	a	feature



Example:	classical	vision
Hand	crafted	decriptor
Ex:	HOG,	bag	of	features

Simple	classifier:
Ex:	SVM

Image

• Idea:	
1. Learn	intermediate	representation
2. Multiply	intermediate	representations

Implicit	hypothesis:	this	compositionality	is	useful	for	the	data	we	have



Deep	Learning

• Idea:	
1. Learn	intermediate	representation
2. Multiply	intermediate	representations

Implicit	hypothesis:	this	compositionality	is	useful	for	the	data	we	have

classifierImage Layer	1 Layer	2 …

0

BBBBBBBB@

0
...
0
1
0
...
0

1

CCCCCCCCA



Results

https://www.dsiac.org



Perceptron

• Frank	Rosenblatt,	1957

f(x) = sign

 
X

i

w

i
x

i

!



Perceptron

• Frank	Rosenblatt,	1957

x

1

x

2

x

3

x

4

...

w1

w2

w4

w3 f(x) = sign

 
X

i

w

i
x

i

!



Biological	neuron

Loose inspiration: Human 
neurons 

Slide	L.	Lazebnik



Perceptron

• Frank	Rosenblatt,	1957

x

1

x

2

x

3

x

4

...

f(x)

w1

w2

w4

w3

Issue:	incapable	of	performing	exclusive	OR	(Minsky	and	Papert 1969)



Perceptron

x

1

x

2

x

3

x

4

...

Hidden	unitsInput
W



2	layers	perceptron

x

1

x

2

x

3

x

4

...

Hidden	unitsInput W1 OutputW2



2	layers	perceptron

x

1

x

2

x

3

x

4

...

Hidden	unitsInput W2 OutputW1

• 2	layers	perceptron:	universal	approximator (Cybenko 1989)
• But	potentially	needs	many	neurons	->	more	layers,	deeper	
networks	(e.g.	Bengio et	al	07,	Montufar et	al	2014)



Multi-layer	perceptron	(MLP)

x

1

x

2

x

3

x

4

...
• 2	layers	perceptron:	universal	approximator (Cybenko 1989)
• But	potentially	needs	many	neurons	->	more	layers,	deeper	
networks	(e.g.	Bengio et	al	07,	Montufar et	al	2014)

Hidden	units OutputInput



Abstraction

Input Layer	1
(linear)

Non-linearity Layer	2
(linear)

Non-linearity Output



Avoiding	overfitting

• Lots	of	parameters	!
• Regularize	(add	L2	norm	of	the	weights	to	the	loss,	also	called	weight	decay)
• Enforce	structure	in	the	design	of	the	network:	convolutions	and	poolings

• Convolution	for	images

Image

Weights

Output

N

N 3
K

K
3

1



Example:	LeNet 5	(1998)



Example:	ResNet (2015)

• LeNet 5

• AlexNet

• ResNet – 34	layer	version	visualized;	state	of	the	art	100s	layers



Learning

• Non	convex!
• Solution:	not	caring,	simply	perform	SGD	(Werbos 1974,	LeCun 1998)
Note:	every	layer	needs	to	be	differentiable	almost	everywhere

• Stochastic	Gradient	Descend	(SGD):	same	as	gradient	descent	except	
the	gradient	is	evaluated	from	a	random	inputs.	

• How	to	evaluate	the	gradient?	
• Short	answer:	since	everything	is	differentiable,	just	use	chain	rule
• Long	answer:	Back	Propagation	algorithm



Back	Propagation

Diagram	from	Y.	LeCun

Two	step	process:
• Forward	pass:	compute	the							by

• Backward:	compute	the											and										by

Xi

Xi = Fi(Xi�1,Wi)

@E

@Wi

@E

@Wi
=

@E

@Xi

@Fi(Xi�1,Wi)

@Wi

@E

@Xi

@E

@Xi�1
=

@E

@Xi

@Fi(Xi�1,Wi)

@Xi�1



What	are	the	different	layers?



Linear

Input	vector

x

Weights Output

N

N

1



Linear

• Issue:	lots	of	parameters

Input	vector

x

Weights Output

N

N

K

K



Convolution

• Sharing	the	weights	/	using	the	structure	of	the	data	

• Zero	padding	to	keep	the	same	size.
• Relation	with	linear	layers	->	”fully	convolutional”	approach

Image	(multi-dimensional	array)

Weights

Output

N

N 3	(or	k)
K

3	(or	k)
1

K

N

N



Pooling

• Goal:	aggregating	information,	gain	invariance
• Example:
• Max	pooling:

Ex:	Image	classification	with	fully	convolutional	approach

• Average	pooling:	

z ! max

i
(zi)

z ! 1

N

NX

i=1

zi



Non	linearities

• Sigmoid,	tanh,	ReLu,	”leaky”	ReLu (																						)
• In	practice,	all	of	them	seem	to	work,	but	can	make	the	networks	
harder	to	train.
• Lots	of	success	with	ReLu:
• Avoid	extremely	small	derivatives	(e.g.	of	a	sigmoid)
• Leads	to	sparse	outputs
• Very	simple	derivative

max(x, ✏x)



Reshaping,	concatenating,	upsampling…

• Reshaping:	e.g.	need	to	interpret	an	array	as	a	vector	or	vice-versa

• Concatenating:	e.g.	a	network	first	treating	two	images	independently	
then	together

• Upsampling:	e.g.	a	generative	network

->	very	simple	derivative,	but	very	useful	in	practice



Many	more

• As	long	as	you	can	compute	forward	and	backward	(fast)
• E.g.	normalization,	cropping…

• NN	can	be	seen	just	as	a	general	modular	framework,	you	can	define	
new	modules,	organize	them	etc.



Practical	problems

• Data	size:	
get	lots	of	memory,	SSD,	use	efficient	database	structure

• Speed:	use	GPUs,	parallel	data	loading
• Network	size:	get	lots	of	memory	on	your	GPU	or/and	use	several	GPUs

Good	news:	you	don’t	have	to	do	it!
Many	ready	to	use	and	efficient	frameworks	are	available	(Pytorch,	Torch,	
TensorFlow,	MatConvNet,	Caffe,	…)



Outline

1. Introduction	to	supervised	and	Deep	Learning	
(focus	on	Computer	Vision)

2. Introduction	to	reinforcement	learning	
(focus	on	learning	Pong)



Disclaimer

• Not	my	main	research	area,	but	”simple”	and	fun	application	of	NN	to	
playing	games.

• Inspiration	for	these	slides	:	
• Online	book	from	Sutton	and	Barto,	Reinforcement	Learning:	An	Introduction
• Andrej	Karpathy blog	post	http://karpathy.github.io/2016/05/31/rl/

• Atari	games	with	RL	seminal	paper:	Mnih,	V.,	Kavukcuoglu,	K.,	Silver,	D.,	
Rusu,	A.	A.,	Veness,	J.,	Bellemare,	M.	G.,	...	&	Petersen,	S.	Human-level	control	
through	deep	reinforcement	learning. Nature, 2015



Reinforcement	learning

• No	prior	data	/	ideal	behavior	available
->	different	from	supervised	learning

• Your	algorithm	has	to	choose	a	set	of	actions,	that	result	(in	a	non	
deterministic	manner)	in	a	final	reward.
->	optimize	a	reward,	different	from	unsupervised	learning

• It’s	typically	impossible	to	explore	exhaustively	the	set	of	actions.



Markov	Decision	Process

• Formalization:	Markov	decision	process,	relate	sensation,	action	and	
goal

• RL	objects:	environment,	state,	action,	agent,	policy,	reward	signal,	
value	function,	environment	model

From	Sutton	and	Barto,	2018



Example:	pong

Gif	from	http://karpathy.github.io/2016/05/31/rl/



Reinforcement	learning

• Goal:	minimize	regret	(difference	with	optimal	policy)

• Trial	and	error	search,	exploration	/	exploitation	trade-off

• Often	stochastic	environment/rewards

• How	to	map	situations	to	actions?



Policy	Gradient	(PG)

One	possible	approach:
• We	use	a	policy	network	(a	standard	MLP)	that	predicts	a	probability	
for	each	action	(e.g.	going	up	in	pong)

• To	train	it,	we	sample	actions	from	the	current	policy,	accumulate	the	
gradients,	and	do	a	gradient	step	depending	on	the	final	reward	
(winning	or	loosing	the	game	in	Pong)

• It	will	work	…	if	you	have	a	reasonnable	probability	to	win	by	chance



Example	Pong



Learnt	weights



Conclusion

• NN	and	particularly	CNN	work	remarkably	well	for	high	dimensional	
problems,	despite	their	simplicity,	when	enough	data	is	available

• RL	works	well	when	there	is	a	good	probability	to	succeed	by	chance	
(e.g.	better	than	human	/	classical	AI	on	most	Atari	games)

• Fast	moving	area!


